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INTRODUCTION

This final report presents results from numerical simulations of two recent
field experiments, the 1987 San Vel Quarry source experiment in Littleton,
Massachuseits, and the 1987 PACE reflection/refraction experiment in
Arizona. The purpose of this modeling exercise is to explore the use of large-
scale simulation as an aid in interpreting such experiments andfor planning
similar source and reflection/refraction studies in the future. The two cases
were chosen by virtue of their ongoing interest to Geophysics Laboratory staff
and their general relevance to the Test Ban Treaty verification problem.

The San Vel Quarry simulation is intended to provide msight nto
conventional quarry blast source effects in terms of shot location and
sequencing, as well as local topography and geology. Because of overall
geometrical and temporal complexity of the physical model, conventional
seismic analysis tools are not practical. For example, layered half-space
algorithms are inadequate in the near-field due to 3-D source and quarry
geometries, while geometrical ray tracing analyses cannot capture the
diffracted and surface wave mode converted phases. This leaves discrete
numerical simulation as the “best” approach for this study. The principal issue
addressed is the practicality of using large-scale 3-D finite element analysis as
a method for uiderstanding and generalizing quarry-derived near-field data.

The PACE experiment simulation is used to explore the nature of
scattering inhomogeneities 1n the lower crust. Data from extensive world-
wide seismic reflection and refraction profiling efforts have increased our
understanding of structure and composition in the crust and upper mantle.
However, the structural cause of ubiquitous lower crustal reflections
commonly observed in extensional regions, ¢.g., the Basin and Range or the
Rhine Graben, remains unexplained. Modeling reflection/refraction data
using numerical scattering simulations offers a practical means to investigate
this phenomenon. The 1987 PACE experiment provides an excellent set of
tefraction and cowcident wide-angle reflection data for this purpose.
Quantifying the scale-length and magnitude of velocity perturbation in the
lower crust is important for establishing petrologic and rheologic constraints,
understanding scattering effects on body and surface waves, and separating
mtrinsic and scattering attenuation,




CONCLUSIONS

Regarding the San Vel Quarry simulations, it is clear that virtually all of
the observed phenomenology can be included, at least qualitatively, in the
simulation using a large-scale, explicit finite element code without overtly
“tuning” the model. Unfortunately, the size and operational complexity of th~
basic calculation on the Cray-2 makes the requisite suite of simulations
prohibitively expensive in terms of cpu time and data post-processing—
certainly well beyond the resources available for this project. The mulu-
borehole source region model contributes much of the simulation’s size and
complexity, but the necessary transfer of large amounts of synthetic data to a
remote site and its processing are the largest drain on resources by a factor of
five or more.

The PACE reflection/refraction simulations have clearly demonstrated that
elastic waves are sensitive to the type of random media, when viewed over a
wide-ranges of incidence angles. The incidence wave and coda behave
differently to differences in the random media, e. g., isotropic versus
anisotropic small-scale heterogeneities. Further understanding of elastic wave
scattering in the crust requires high resolution recordings of seismic data at
near-vertical to wide-angles. Coherency analysis of both the direct wave (e.g.,
the PmP phase) and coda, as a function of offset and frequency, are necessary
to constrain possible models of small-scale velocity heterogeneities
Furthermore, a comprehensive understand of crustal scale-lengths and
attenvation requires a better understanding of the differences observed mn both
the back-scattered P- and S-wavefields.




THREE-DIMENSIONAL FINITE ELEMENT SIMULATIONS OF
RIPPLE-FIRED QUARRY BLASTS

Gregory L. Wojcik and David K. Vaughan
Weidlinger Associates, Los Altos, California

1. Introduction

This paper describes some numerical model simulations of the San Vel
Quarry experiment in Littleton, Massachusetts, performed during the summer
of 1987 by Stump, et al. (1987) and GL, MIT, and Boston College
researchers. These simulations are intended to support continuing field work
on the mterpretation of quarry explosion source effects as they pertain to Test
Ban Treaty verification issues. The work has been performed under an
ongoing research program on seismic wave modeling for experiments
conducted under the auspices of the Geophysics Laboratory, GL Contract
#F19628-88-C-0067.

The ultimate aim of this work is to gain a better understanding of
conventional quarry blast source effects in terms of shot distribution and
sequencing, as well as local topography and geology. There are a number of
approaches available to us for understanding this complex phenomenon
including 1) conventional layered half-space interpretation, 2) field data
acquisition and interpretation, 3) physical model experiments, and 4)
numerical experiments  Since the quarry is three-dimensional with a very
nonuniform surface, 1.e., a big hole in bedrock, conventional half-space
methods are inadequate in the near-field, leaving field data and models as the
best source of insight.

The principal issue addressed here is the practicality of using large-scale,
3-D finite element model analysis as a method for both understanding and
generalizing quarry-dertved near-field data.  Although high-resolution, large-
scale 2-D models are readily analyzed on today’s supercomputets, comparable
3-D models typically require at least an order of magnitude greater resources
in terms of memory and speed. However, the present quarry problem
requires an intermediate model size and level of complexity that should be
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practical on a modern machine like the Cray-2. On the other hand, the
complexity of the source region, in terms of sequentially detonated multi-
boreholes, is an extremely challenging problem.

2. Experiment

The physical experiment measured ground acceleration and/or velocity at
ranges of hundreds of meters to tens of kilometers from a series of quarry
blasts at the San Vel Quarry in Littleton, Massachusetts. The blasts were
conventional quarrying explosions intended to fracture and rubbleize rock off
one of the quarry pit's faces. The pit itself was approximately 400x800x60
feet at the time of the expenments. The typical blast configuration consisted
of three staggered rows of explosive-filled bore holes (48-72 total), each
approximately 58-60 feet deep, along a portion of the pit's edge. The holes
were detonated in succession along the edge, so-called ripple firing, with the
detonation sequence (delay time) chosen empirically to maximize rock
fracturing while minimizing ground motions felt by nearby homes and
businesses. Although seismic data were collected at various ranges, the set of
principal interest here are accelerograms from instruments scattered around
the pit within a circle approximately 1600 feet in diameter. Locations are
shown in Fig. 1 and an example of the shot array geometry and ideal firing
sequence is given in Fig, 2. The three-component acceleration records at the
sites are given in Stump, et al. (1987). Three blasts, cach on a different
section of the pit perimeter, were recorded at these nstrument sites.

One purpose of the experiment was to examine effects of ripple firing on
ground motion spectra. This type of detonation produces spectral scalloping
that may be useful in discriminating small nuclear explosions from quany
blasts. It was noted, in both these as well as other experiments, that the actual
delay times deviated significantly from those planned—apparently caused by
repeatability problems with commercial blasting caps. The question is what
effect do these random delay time errors and local site effects have on ground
motion, and spectral scalloping in particular? Since this is difficult to answer
in the field, our research approaches the problem by means of numerical
modeling. The objective is to numerically simulate the detonation sequence in
a discrete model of the quarry, generate a set of synthetic seismograms at the
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Figure 1. An illustration of the three-dimensional quarry model
showing dimensions, mstrument locations and a detail of the
explosive berehole array.
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scaled instrument locations, and compare synthetic and measured
seismograms. The calculations are expected to yield insight into effects of
shot timing errors and local topography and geology on observed ground
motions.

3. Finite Element Model

To perform the simulations, a three-dimensional, explicit finite element
model of the quarry was built and executed on a Cray-2 supercomputer at the
Air Force Weapons Laboratory. The 240 x 240 x 74 element model (= 4.6
million elements including source region refinement) represented the quarry
pit and surrounding area (2160 x 2160 x 656 feet) including all accelerometer
sites. It was gridded to propagate 100 Hz shear (S-)waves without significant
dispersion, since this was the upper bound on instrument frequency response.

The model required significant new code development in order to
accommodate the large number of small-diameter, explosive filled bore holes.
Since the typical hole was much smaller than a free-field element, a
subgridding capability was developed to grade the grid size down from the
free-field dim=nsion, through an intermediate zone, io approximately twice
the hole diameter.

Because the quarry blast is highly nonlinear near the explosive array—due
to high pressure, fracturing, and the resulting large strains and
displacements—conventional linear source modeling techniques could not be
used. Instead an “energy pill” source was implemented, where the explosive
cylinder and 1ts immediate neighborhood was replaced after detonation by a
pressurized, outwardly moving region with one percent of the total energy
(1/2 kinetic plus 1/2 potential) as the explosive products and included rock.
Nonlinear rock fracturing was mimicked by tension cutoff in the element's
material model. A nonlinear cap model of the inelastic constitutive behavior
of rock was considered mitially but never implemented due to the dominance
of fracturing, rather than cyclic nonlinear processes. Although the detailed
fracture phenomenology is not simulated by this model, it was deemed
adequate for calculating the seismic pulses radiated by the explosion, including
shieiding by fractured rock around neighboring boreholes. A two-

7




dimensional example of the model soon after detonation of three sheets (i.e.,
two-dimensional boreholes) of explosive is shown in Fig. 3. This and other 2-
D models were used extensively for development of the source and subgrid
coding implemented finally in 3-D.

The principal difficulty encountered with the model is late time numerical
noise contamination. This is due to the calculation’s relatively long duration ,
about one second of simulated time, and the high frequency nature of the
borehole detonations and rock fracturing. Waves reverberate within the
model many times over this period, and since the radiation boundary condition
(absorbing boundary) on the outer sides of the model is not perfect, trapped
energy eventually grows to a significant level. This problem was reduced to
the point that reasonable results could be obtained by moving the bottom
boundary deeper and introducing a small amount of viscous damping. The
damping does not affect the seismic signals significantly, but it does reduce the
ringing substantially. Note that the damping introduced is much less than a
realistic Q would imply and is only introduced for numerical purposes. This
experience clearly indicates the need for better time-domain radiation
boundary conditions.

4. Calculations

Two calculations were done on the full 3-D model. The first was
hypothetical and assumed a single borehole explosion in the center of the Shot
3 array. The second was a full simulation of the Shot 3 configuration with 72
borehole explosions detonated according to the original delay time
specifications. The latter simulation used about 33 hours of CPU time to
simulate one second of model response, and required 90 million words of
memory. Synthetic vertical velocity seismograms on a circle surrounding the
Shot 3 array and on lines through the array, perpendicular and parallel to the
quarry face are shown in Figures 4-9.

Figures 4-6 show the single shot synthetic seismograms. Figure 4
illustrates the influence of quarry topography on the azimuthal distribution of
ground motion. Arrival times at 180° to 360° indicate a prominent P-wave
arrival followed by S-waves and the dominant Rayleigh wave. The P-wave at
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0° to 150° is a much weaker arrival due to shielding by the quarry faces.
Apparently, the S- and Rayleigh waves are not shielded except along azimuths
from 130° to 160°, corresponding to the comer of the quarry. Figures 5 and
6 illustrate the decay of arrivals with distance from the shot. Figure 5 in
particular shows shielding of the P-wave by the quarry faces and a relative
tme delay for the Rayleigh wave on the left side of the quarry. It also
indicates significantly stronger motion on the quarry floor than outside on the
natural ground level, probably due to shielding by the right quarry face.

Figures 7-9 show corresponding synthetic seismograms for the 72 ripple-
fired shots. The duration necessary to capture the complete sequence (=0.8 s)
appears to be given by the single shot duration (=0.14 s) plus the sequence
time (=0.7 s). Complexity of these seismograms is clearly much greater than
for the single shot, with motion dominated by Rayleigh waves from the long
sequence of explosions. Note that in Fig. 7, the azimuthal distribution of
amplitudes is similar to that in Fig. 4, corresponding to the shielding noted
above. However, the timing of highest ground motion at any azimuth is
directly related to proximity and timing of the shot sequence, e.g., the strong
arrivals from 170° to 200° at 0.4 s to 0.6 s correspond to the later shots
located closest to these output points, e.g., see Fig. 2. Similar conclusions
follow from Figures 8 and 9. There does not appear to be any directivity
effect due to shot interference, particularly since the sequencing would be
designed to prevent constructive interference.

5. Comparisons

Locations of the ten accelerometer locations around the quarry are shown
n Fig. 10. Comparisons of measured and synthetic seismograms at these
stations are made in Figures 11-15. Figure 11 compares arrival times,
durations, and vertical accelerations at two instrument locations on the left and
right sides of the quarry. Note that synthetic acceleration was obtained by
differentiating velocity. Significant errors in both timing, duration, and
amplitudes are seen. However, the arrival time comparison is invalid because
the measured times are inconsistent with the instrument distances from the
shot array. The amplitudes are in reasonable agreement at Gauge 3 but the
calculations overpredict acceleration at Gauge 7. Although truncated by the

13
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Figure 10. Locations of accelerometers around the quarry.
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need to terminate the calculation, the durations are too long in the calculation,
probably due to the lack of a realistic amount of material damping.

Figures 12-14 compare synthetic velocity seismograms—vertical, north,
and east respectively—with recorded velocities (integrated accelerations) at
the instrument sites. The amplitude ration is indicate between the two sets of
time histories. In all cases, the calculated velocities are too low. This is not
surprizing considering that the energy coupling coefficient was arbitrarily
taken as 0.01 and could be significantly higher. Increasing this coefficient
would not increase all of the output stations uniformly due to the nonlinear
tension cutoff process in the source region. The monochromatic appearance
of the calculation is due to the assumption of uniform shot sequencing. A
more realistic random pattern would introduce significant interference
between the arrivals.

Figure 15 compares synthetic and measured spectra at the two sites on
either side of the quarry snown 1n Fig. 10. It is clear that there is relatively
more high frequency motion in the synthetics than in the data. This is an
artifact of the calculation's very severe, high frequency source environment,
and inadequate damping—both intrinsic and scattering-induced-—in the source
region and on the travel path.

6. Conclusions

Our conclusion from this comparison is that over-all similarities between
calculation and experniment may exist for azimuthal or distance variations due
to gross shielding, but quantitative comparison is poor in general. Better
phenomenological modeling is clearly needed in the source region, including a
better estimate of the source coupling coefficient. This refined source model
may require a subgrid with a few million elements alone. In addition,
intrinsic damping should be included along with a weathered layer, i.e., a high
near-surface velocity gradient. At the least, a suite of elastic calculations
should have preceded those presented here in order to obtain better insight
into shot sequencing and topographic effects.
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These results indicate to us the practicality, albeit limited, of 3-D
numerical simulations in local geology and topography as an aid in
interpreting and perhaps generalizing field data. However, it is clear that only
gross behavior can be deduced from calculations, i.e., one-to-one comparisons
with field measurements are virtually impossible. Furthermore, the full suite
of calculations that would be required for an investigation of shot timing
errors on spectra and signal interference are prohibited by the limited run
time available on the Cray-2 used for this study. Hundreds of hours would be
necessary for a more complete study.

In addition to studies of seismic arrivals on the surface, it would be of
interest to examine the distribution of downgoing energy as a means to predict
the far-field radiation pattern. This can certainly be done, even with the
vertically truncated model used in this study. The difficulty is the limited
capability for transferring large amounts of data from a remote Cray-2
facility to the analyst’s office. Although possible, in practice, limited
postprocessing budgets currently limit such studies to onsite researchers who
have direct access to a large data space.
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1. Introduction

Over the past decade, extensive world-wide seismic reflection and
refraction profiling efforts have added considerably to our understanding of
structure and composition in the crust and upper mantle. In certain regions
this work has increased resolution of deeper crustal structure to features on
the order of a few wavelengths, although many questions remain unanswered
concerning the physical nature of these structures.

Of particular interest is the structural source of ubiquitous lower crustal
reflections commonly observed in extensional regions, e.g. the Basin and
Range and Rhine Graben. Modeling reflection/refraction data using numerical
scattering simulations offers a practical means to investigate this phenomenon.
However, the hikelihood of both lateral and vertical crustal inhomogeneity in a
realistic model makes such simulation difficult, it not impossible, using
traditional approaches. This paper investigates the problem using stochastic
finite element models of the crust and upper mantle.

To address the effects of crustal scattering on refraction/wide-angle
reflection data, we model selected refraction data [McCarthy et al., 1990] and
coincident reflection data [Goodwin and McCarthy, 1990} recorded acioss the
Buckskin-Rawhide Mountains metamorphic core complex in the southern
Basin and Range. Stochastic models of lower crustal velocity structure are
used to simulate high frequency (> 5 Hz) elastic wave propagation in order to
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determine how promunent crustal P-wave phases are affected by small scale
crustal heterogeneities. Quantifying the scale-length and magnitude of
velocity fluctuation in the lower crust is important for: 1) establishing
petrologic and rheologic constraints based on models of admissible velocity
variations; 2) understanding the role of crustal heterogeneities on body and
surface wave transmission; and 3) determining differences between intrinsic
and scattering attenuation. The first two objectives are accomplished here by
deterministic and stochastic finite element synthetic seismogram modeling of
the coincident near-vertical reflection data and the wide-angle refraction data.
The deterministic two-dimensional velocity models used in the finite element
simulations was derived from detailed travel time and amplitude analysis of
the 1987 refraction data (McCarthy et al., 1990].

By way of background, reflectivity and finite difference synthetic
seismogram techniques have recently used novel approaches to simulate lower
crustal reflectivity [Sandmeier et al., 1987; Gibson and Levander, 1988).
Modeling refraction data from the Rhine Graben, Sandmeier and Wenzel
(1987] simulated lower crustal reflectivity using a velocity model consisting of
a series of random plane layer thicknesses that alternated between high and
low velocities. Multiple reverberations within the finely layered lower crust
produces the complex coda seen in wide-angle refraction data.

Gibson and Levander [1988] explained the same features by using a quite
different velocity model that contained random isotropic velocity variations in
the lower crust. These two models represent what can be considered “end-
member” velocity structures that may explan the origins of lower crustal
reflectivity. Importantly, cach model, based on the dimensions of the crustal
scatterers and range of velocity fluctuations, has differing implications about
the present state of the lower crust and the processes that form the crust, such
as the migration of crustal magma, emplacement of mantle derived melts, and
lower crustal ductility.

The origins of body wave coda observed in local earthquake recordings
[Frankel and Clayton, 1987] and seismic refraction and reflection profiles
|Sandmeier et al., 1987, Gibson and Levander, 1987] have proven difficult to
explain using conventional synthetic modeling techniques. Crust and upper-
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mantle structure is quite complex, containing a large range of scale lengths
and velocity fluctuations [Wu and Aki, 1989] that are difficult to accurately
approximate. A variety of synthetic seismogram techniques have been used to
model body wave coda. Ray theoretical metliods [Cerveny et al., 1982] have
been particularly useful for modeling small-angle scattering in two- and three-
dimensional structures, where it is assumed that the incident wavelength is
much larger than the characteristic length of the structure. Reflectivity
synthetic seismograms, limited to depth-dependent variations in velocity, have
successfully modeled high-frequency (>20 Hz) elastic wave coda produced by
a finely laminated lower crust [Sandmeier et al., 1987]. More general finite-
difference simulations of seismic wave propagation in two-dimensional
random velocity media {Frankel and Clayton, 1984] have been used to
constrain the average scattering properties of the crust. Finite difference and
finite element methods, are being used more often in coda studies because of
their ability to model small-scale heterogeneities and wide-angle scattering. In
addition, these techniques are not restricted to body wave propagation but can
also accurately simulate surface waves in random media [Hill and Levander,
1984].

2. Basin and Range Crustal Structure

Geophysical surveys and geologic interpretations of Basin and Range
structure and tectonics constitute a large body of literature. Reviews of the
regional geology and geophysics of the Basin and Range include those of
Thompson and Burke [1974], Smith [1978], Eaton [1979), Speed [1982],
Allmendinger et al. [1987], Pakiser [1989], Smith et al. [1989], and Thompson
et al [1989). The reader is referred to McCarthy et al. {1990} for a
description of the regional geology and tectonics in the vicinity of the 1987
PACE experiment.

Since the mid 1960's, extensive refraction profiling of the Basin and
Range Province has established that the crust is thin (< 32 km thick) with
upper mantle P-wave velocities between 7.8 and 8.1 km s-1, Reinterpretation
and summary of USGS seismic refraction data [Prodehi, 1979] suggests a 29 to
35 km crust with a 7.9 km s-! upper mantle velocity. Using Nevada Test Site
(NTS) explosions and quarry blasts, Stauber and Boore [1978] found evidence
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for an anomalously thin crust and low upper-mantle velocity of 7.8 km s-1.
Recording independent refraction data, using NTS explosions and quarry
blasts, Priestley et al. [1982] concluded that the crust in northwestern Nevada
is as thin as 20 km. Both Stauber and Boore [1978) and Priestley et al. [1982]
recorded unreversed profiles, hence, their crustal thicknesses and Pn velocities
must be considered poorly constrained. Refraction results for northern
Nevada [Benz et al., 1990] indicates a crustal thickness of =30 km and upper
mantle velocities of 7.9-8.0 km s-1, which argues against an anomalous crust
in northern Nevada when viewed on a Basin wide average. While details may
differ, the southern Basin and Range velocity structure [McCarthy et al.,
1990] is similar to that found in Nevada [Benz et al., 1990]. Crustal thickness
is =30 km and upper-mantle velocities range from 7.9 to 8.0 km s-1.
COCORP reflection profiling throughout the Basin and Range {Allmendinger
et al., 1987; Hague et al., 1987; Hague et al., 1986] has also revealed: 1) a
moderately reflective upper crust with evidence of planar to listric normal
faults and asymmetric basins; 2) a highly reflective lower crust marked by
sub-horizontal, discontinuous reflections; and 3) a laterally discontinuous, but
moderately reflective Moho {Klemperer et al., 1986].

3. Design of the 1987 PACE Seismic Experiment

The 1987 PACE seismic experiment was designed to: 1) image the crustal
structure of the Buckskin-Rawhide Mountain metamorphic core complex; 2)
determine the crust and upper mantle structure across the Colorado
Plateau/Basin and Range transition; and 3) record wide-angle refraction and
coincident reflection data with the intent of using the inherent strengths of
each technique to improve the resolution of lower crustal structure.
Achieving these objectives required deploying a 180 km NE-SW trending
refraction profile (Fig. 1) crossing the Buckskin-Rawhide Mountain
metamorphic core complex and roughly perpendicular to the regional
direction of extension [Eddington et al., 1986). The profile consists of two
140-km-long deployments laid end-to-end, each including 120 cassette
recorders spaced ~750 m apart (Healy et al , 1982]. An in-line 400-channel,
industry standard reflection array with a station spacing of ~40 m was located
between shotpoints 28 and 29 n the transition zone (Fig. 1). Both the
refraction and reflection arrays recorded 27 shots from 19 shotpoints.
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Figure 1. Location map of the 1987 PACE seismic transect.
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(SP) referred to in the discussion. The heavy lines are the
location of the coincident reflection arrays. Arizona
COCORP profile is shown as solid lines in inset.
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Several shotpoints were shot during both deployments in order to increase the
maximum recorded offset for the profile. Shots were spaced ~25 km apart
and charge sizes ranged from 400 to 2700 kg. Details on the station locations,
shot size, and instrumentation used in the refraction recording are given in
Larkin et al. [1989]. In the remainder of this paper, individual record sections
will be denoted by their shotpoint number, e.g., shotpoint 21 will be referred
to as SP21.

Our interpretation of the 1987 PACE seismic data focuses on developing a
model of crust and upper-mantle structure based on finite element simulation
of selected seismic refraction/wide-angle reflection data that we feel
characterize the deep crustal structure of the southern Basin and Range. Our
discussion complements other studies of the 1987 PACE seismic data including
the two-dimensional travel-time and ray-theoretical synthetic-seismogram
modeling of McCarthy et al. [1990) and the three-component seismic
modeling of Goodwin and McCarthy [1990].

4. Observed Seismic Refraction and Reflection Data

This paper utilizes amplitude and travel time variations observed in the
refraction and coincident reflection arrays to infer detailed characteristics of
lower crustal velocity structure. This study focuses exclusively on modeling
crustal P-waves, and will primarily address variations in PmP travel time and
amplitude in terms of lower crustal structure and scattering. Accurately
modeling PmP is particularly important considering it is the most prominent
wide-angle phase that propagates through the lower crust, and will be the
crustal body-wave phase most sensitive to small-scale velocity heterogeneities.
Figure 2 shows the refraction record section (SP21) that will be modeled in
this study. Each trace is low-pass filtered to 12 Hz and plotted trace
normalized with a reducing velocity of 6.0 km s-1. Time-term corrections
were applied to correct for systematic travel-time variations due to velocity
changes near the recorder [Kohler, 1988]. The time-term correction reduces
the data to a datum coincident with the elevation of the source by applying a
static travel time shifts to each seismic trace. For the entire profile, time-term
corrections averaged -0.08 s and ranged from -0.46 s to +0.25 s.
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The prominent crustal P-wave phases easily recognizable on the record
section are the upper crustal headwave (Pg), the mid-crustal reflection (PiP),
the Moho reflection (PmP), and upper mantle headwave (Pn). The Pg phase 1s
observed and correlatable as a first arrivals to distances greater than 90 km.
Large travel time variations of the Pg phase indicate large differences in near-
surface velocity structure along the profile. On average, the apparent velocity
of the Pg phase is 6.0 km s-1. The mid-crustal reflection (PiP) 1s observed as a
secondary arrival from =30 (1.0 s reduced time) to =120 km (0.5 s reduced
time). The PiP closely following in travel time the Pg phase suggests that the
mid-crustal boundary is relatively shallow (<15-18 km), given that the upper
crustal basement has a velocity of 6.0 km s-1. This observation is supported
by the modeling results of McCarthy et al. [1990] that place the mid-crustal
boundary at 12 km beneath the center of the profile. Following the mid-
crustal reflection, the PmP phase 1s the most prominent secondary arrival and
is observed from =70 (=3.5 s reduced time) to 180 km (0.5 s reduced time).
The lack of pre-critical energy (<80 km) may indicate a transitional crust-
mantle boundary [Braile and Smuth, 1977]. The upper-mantle headwave (Pn)
is observed as a first arrival starting at =140 km (0.0 s reduced time) and is
observed to a distance of 170 km (-1.0 s reduced time).

High-quality, single-fold reflection data recorded by the coincident
reflection array are shown in Figure 3. The record section is a composite
made from the recordings of shotpomts 28, 36, and 29. Amplitudes are
plotted true after correcting for spherical divergence and bandpass filtering
between 10-45 Hz. The figure indicates the quality of the data and some of the
main characteristics of the Colorado Plateau/Basin and Range Transition.
Based on the reflection data and for purposes of discussion, the crust is
described in terms of four units, an upper, middle, lower crust, and upper
mantle. The upper crust (< 4 s two-way travel time (TWTT)) displays
prominent reflectors throughout, the most conspicuous being the “Bagdad
Reflectors” discussed by Goodwin et al. [1989]). The middle crust, between
4.0-6.0 s, is transparent seismically. The top of the lower crust is marked by
the onset of reflectivity, beginning at =5.8 s and 2 km and increasing to =6.8 s
TWTT at 20 km. The entire lower crust 1s highly reflectivity. The reflector
“R””, when used as a reference mark, indicates roughly 3 km of crustal
thickening in the direction of the Colorado Plateau. A prominent Moho
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reflection is missing from these data, but some hint of it 1s seen at =9.2 s and
2.5 km. Below =10 s, the upper-mantle appears transparent as reflectivity
diminishes. The top and bottom the zone of lower crustal reflectivity is in
agreement with the results of McCarthy et al. (1990).

5. Finite Element Synthetic Seismograms

Explicit second or fourth order finite element/finite difference methods
have been used in a variety of geophysical applications that range from
relatively low frequency strong ground motion modeling [Vidale et al., 1985)
to high frequency reverse time migration of seismic reflection data [Chang
and McMechan, 1987). The success of the method is primarily due to its
ability to accurately compute full wavefield synthetic seismograms for
arbitrarily complex velocity structures and complex sources. This ability to
mode] complex velocity structure has found an application in the simulation
and modeling of seismic coda observed in reflection/refraction data [Gibson
and Levander, 1988], regional surface waves [Jih and McLaughlin, 1988],
earthquake data [Frankel and Clayton, 1984], and teleseisms [McLaughlin,
1986] using models of random velocity variation.

In this study, we will use the traditional Galerkin formulation of the finite
element method [Zienkiewicz, 1983], a formulation implemented by Wojcik et
al. [1988]. The fimte element synthetic seismograms have not been used as
extensively as finite difference techniques, but has been particularly successful
in earthquake source studies [McGowan et al., 1977; Archuleta and Day ,
1980; Geller et al., 1979; Archuleta and Frazier , 1978]. Both the finite
element and finite difference method belong 1o a general class of methods
known as the method of weighted residuals [Huebner and Thornton, 1982).
Unlike the finite difference method, the finite element method does not define
the velocity and density model as a set of discrete grid points, but as an
assemblage of piece-wise continuous subdomains or elements, over which the
displacement is defined by an approximating polynomial [Zienkiewicz, 1983].
Reduced to a linear system of second order ordinary differential equations, the
displacements at the clemental nodes are calculated from the displacements at
the previous two time-steps and the displacements at the surrounding nodes. A
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lucid discussion on the formulation and error analysis of the finite element and
finite difference techniques can be found in Marfurt [1985).

6. Realization of a Random Velocity Structure

An important aspect in synthetic seismogram modeling of crustal
scattering is the accurate statistical description of the random velocity
structure. While much work has been done on quantifying the size and
strength of random scattercrs in the crust [Frankel and Clayton, 1984; Gibson
and Levander, 1988], only a limited number of data sets have been
mnvestigated. Therefore, fundamental concepts on the scale length and strength
of crustal scattering for different geological provinces are not well known.
Thus far, modeling studies have typically used either gaussian, exponential, or
self-similar correlation functions [Frankel and Clayton, 1984; Gibson and
Levander, 1988; Jih and McLaughlin, 1988] to generate realizations of the
velocity field.

Figure 4a shows an isotropic random field that is typically incorporated as
the stochastic component of the velocity model. In this example, an
exponential correlation function, with a correlation length of 200 m, was used
to generate the random field. Whule isotropic correlation functions have been
successful in numerical studies of seismic coda, they may not always be
appropriate. This 1s particularly true n the Basin and Range, where active
extension since Cenozoic time has produced a sub-horizontal crustal fabric.
Conventional CDP reflection profiling across the Basin and Range
[Allmendinger et al.; 1987; Klemperer et al., 1986; Hague et al., 1987} and
individual shot gathers (Fig. 3) are in accord with the view of pervasive lower
crustal reflectivity that is dominated by a sub-horizontal reflection pattern.
Such patterns are probably produced by thermal and rheologic processes that
have preferentially deformed the ductile lower crust in the direction of
maximum extension. While conventional CMP processing of deep crustal
reflections may produce the appearance of sub-horizontal reflectivity [Gibson
and Levander, 1988], it is difficult to argue that sub-horizontal lower crust
fabric do not significantly contribute, given the recent tectonic evolution of
the Basin and Range.




EXPONENTIAL RANDOM MEDIA
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Figure 4. Two-dimensional realizations of (a) an exponential 1sotropic
random media with a honzontal and vertical correlation length
of 200 m and (b) an exponental anisetropic random media with
a horizontal and vertical correlation length of 1600 m and 200
m, respectively. The light and dark regions represent high and
low velocities about a mean background velocity.
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An alternative model to the isotropic random media is a realization using
an anisotropic correlation function, where the spatial lag differs between the
horizontal and vertical directions. Shown in Figure 4b is an anisotropic
random media where the horizontal and vertical correlation lengths are 1600
m and 200 m, respectively. We feel this model represents a compromise
between the velocity structure used by Gibson and Levander [1989] to model
the Rhine graben refraction data and the one-dimensional plane layer model of
Sandmeier et al. [1987]. It also approximates a sub-horizontal fabric that
might be representative, in a generic way, of the lower crust in the Basin and
Range.

7. Finite Element Simulations of the 1987 PACE Seismic Data
Wide-angle Refraction Data from SP21

To investigate the effects that different random media have on wave
propagation, we will compared observed seismic refraction data (SP21) with
two-dimensional synthetic seismogram simulations that incorporate random
velocity variation in the lower crust. The deterministic two-dimensional
velocity structure used as a basis was derived from iterative travel time
modeling [McCarthy et al., 1990]). The three synthetic seismogram record
sections presented were calculated from: 1) a finite element grid derived from
the velocity model of McCarthy et al. [1990]; 2) a lower crust velocity model
with isotropic small-scale heterogeneities, similar to that in Figure 4a; and 3) a
lower crustal velocity model with anisotropic small-scale heterogeneities,
similar to that in Figure 4b.

Figure 5 shows the two-dimensional velocity structure [McCarthy et al.,
1990] used in the three finite element simulations. The two-dimensional finite
element velocity model was constructed by digitizing the raytrace model (Fig.
5) every 43 m. To avoid prohibitively long run times due to low sediment
velocities, P-wave velocities less than 6.0 km s-1 were reset to a velocity of
6.0 km s-1.  This enabled the calculation of high frequency synthetic
seismograms, given a 43 m nodal spacing, but eliminated the effects of near-
surface sedimentary structure in the calculations. S-wave velocities were
scaled relative to the P-wave velocities assuming a Poisson's ratio of 0.25 and
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densities were calculated using the empirical relationship p = 0.2£240.3977a
[Nafe and Drake, 1957), where p is the density and o is the P-wave velocity.

The left side of the finite element grid is located at SP21 and is modeled as
a plane of symmetry. The bottom and right edges of the grid are A2
absorbing boundaries [Clayton and Engquist , 1977] and the top of the grid is
a stress-free boundary. The finite element model was 180 km in length and 37
km in depth. The source is an isotropic line source and the source-time
function is a Ricker wavelet with a half-power frequency of 8.0 Hz, resulting
in approximately 17 nodes per wavelength for the slowest P-wave and 10
nodes per wavelength for the slowest S-wave. The finite element formulation
assumes a purely elastic model, hence, intrinsic attenuation is not accounted
for in the calculations.

Figure 6 shows a comparison of the observed refraction section and the
finite element synthetic seismograms for a deterministic medium. The
comparison shows that the relative travel time and amplitude of the major
crustal P-wave phases are well modeled by the finite element synthetic
seismograms. The existence of significant pre-critical PmP energy in the
synthetic seismograms suggests that the model's crust-mantle transition is too
sharp and that a transitional Moho is more appropriate [Braile and Smith,
1977). For offsets greater than 60 km, Pg is over-predicted relative to the
observed data. In general, the Basin and Range exhibits low upper crustal Q
(<200-300; Braile, 1977; Benz et al., 1990), which causes noticeable amplitude
and frequency loss for offsets greater than 60 km. Since the finite element
simulations assume purely elastic media, intrinsic attenuation cannot be
accounted for and the resulting synthetics over-predict the Pg and PiP
amplitudes at larger offsets.

Isotropic Random Medium—In this simulation, an isotropic, exponential
random velocity structure was incorporated into the lower crust. The random
medium is similar to that seen in Figure 4a. The random medium was
generated with a correlation length of 200 m and a 5% standard deviation
(std) relative to an average lower crustal background velocity of 6.5 km s-1.
Shown in Figure 7 is a comparison of the observed and theoretical
seismograms. It can be seen that the scattering effects from this model are
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Figure 6. Comparison of trace normalized refraction data (SP21) and finite element synthetic seismograms

computed for the two-dimensional velocity model shown in Figure 4 but without scatterers.
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noticeable as coda following the PiP and PmP phases The largest difference
between this simulation and the previous one is the loss of correlatable pre-
critical PmP energy for distances less than 60 km. This simulation suggests
that a transitional Moho is not required to explain the lack of pre-critical PmP
energy in the observed data. Results show that lower crustal velocity
fluctuations distort the amplitude and phase of the relatively weak, precritical
PmP, giving it the appearance of a transitional Moho. Beyond the critical
point, the amplitude of the PmP increases such that coherency is maintained
with offset but noticeable amplitude decay occurs. This is due to sigmficant P-
to-P and P-to-S conversions that effectively partition energy away from the
direct wave, in this case the PmP phase. Possibly, the standard deviation of
the random velocity structure is too large and the consequence is significant
amplitude loss of PmP.

Anisotropic Random Media—In this simulation, an anisotropic,
exponential, random velocity structure, similar to that shown n Figure 4b, is
incorporated into the lower crust. The horizontal and vertical correlation
lengths are 1600 m and 200 m, respectively. Like the previous simulation, the
random fluctuations in velocity have a 5% std relative to an average lower
crustal background velocity of 6.5 km s-1. The observed and theoretical
seismograms for this simulation are shown in Figure 7. When compared to
the previous simulation, the synthetic seismograms in Figure 7 show quite a
difference in both the character of the coda and in the amphtude variations of
the PiP and PmP phase. The coda following PiP and PmP display significant
coherency that appears as prominent phases that can be correlated up to 20
km. The best example of this is the phase that follows closely in time PiP
between 60 and 90 km. These coherent and relative large coda waves have the
effect of decreasing the coherency of the principal body waves, both PiP and
PmP. Similar to the previous simulation, the precritical PmP reflection is
weak and incoherent.

When compared tc the observed data, the synthetic seismograms replicate
some of the complexity of the data. The majority of coda is seen as wide-
angle P-to-P conversions, which produced the relatively large coherent coda.
Correlatable coda energy is observed as phases that cannot by described and
modeled in conventional terms, like Pg, PiP, and PmP. For example, between
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80-100 km, weak coherent energy precedes PmP by ~0.5-1.0 s reduced time.
In addition, an enechelon pattern of energy is observed to follow the PmP for
=2.0 s, which is similar to that found in the synthetic seismograms. Unlike the
observed data, the synthetic seismograms predict a PmP phase that is not as
coherent between 80-180 km as that observed. This observation demonstrates
the sensitivity of the incident wave to the correlation length of the scattering
media and possibly the size of the velocity fluctuations. Perhaps, had the
aspect ratio or standard deviation been smaller, the simulations may have
predicted a higher degree of coherency for the PmP phase.

These simulations demonstrate that certain aspects of each model fit the
observed data. The isotropic random media predicts more coherency of PmP,
but less coherency of the coda. By way of contrast, the anisotropic random
media predict coherency in the coda and less coherency of PmP. Both these
results can be explained in terms of the types of body waves scattered from the
incident wavefield. In an 1sotropic random medium, for all angles of
incidence, the incident wavefield will produce scattered P and S energy.
Because the dimensions of the scattering body are close to that of the incident
wavefield, scattering occurs over a wide range of angles and, therefore, no
coherent wide-angle coda is produced. For the anisotropic random media, the
strongest scattering will occur over a restricted range of incident angles,
which correspond to wide-angle P-to-P conversion. This process produces the
coherent wide-angle P-wave coda that has an apparent velocity similar to
PmP.

These results represent only a limited number of simulations, so only
general comments can be made about lower crustal structure. This synthetic
seismograms for the isotropic case suggest that 5% std is too large, since PmP
cannot propagate to large distances due to effective P-to-P and P-to-S
scattering, which rapidly partitions energy away from PmP. The anisotropic
case also indicates that 5% std is possibly too large, because the amplitudes of
the wide-angle P-wave coda are over predicted, compared to PmP. It is also
possible that the aspect ratio for the anisotropic case is too large, considering
that the synthetic seismograms predict coherent P-wave coda over distances
ranges of 30 km, which is larger than that seen in the data. At this point, not
enough simulations have been done for a range of velocity models to

43




determine what is the range of permissible structures that predict the observed
data.

8. Near-Vertical Reflection Data from SP28

Near-vertical synthetic seismograms have been calculated to understand
the near-vertical response of the two random media investigated in the
previous section. The simulations are computed using a velocity structure
constructed by digitized the two-dimensional velocity (Fig. 5) every 5 m
starting near SP28. The finite element model has a length of 20 km and depth
of 40 km. Peak frequency of the Ricker source wavelet is 20 Hz. Based on
the calculations in the previous section, it is assumed that a 5% std is too large,
and the following simulations assume a 3% std about a mean lower crustal
velocity of 6.5 km s-1, Figure 8 shows examples of the velocity-depth
function selected from one location (SP28). Figure 8a is the velocity-depth
function assuming no random distribution of velocity in the lower crust, while
Figure 8b is the velocity-depth function assuming random variations of
velocity in the lower crust. In addition, synthetic seismograms are also
calculated for a model with a transitional crust-mantle boundary (Fig. 8c). A
transitional crust-mantle boundary is investigated since the lower-frequency
wide-angle synthetic seismograms (Fig. 7 ) argued against a transitional Moho,
based on the lack of coherent pre-critical PmP energy. These same wide-
angle synthetic seismograms contradicted the results from the model with
smoothly-varying lower crustal velocities (Fig. 6) and, therefore, proved
inconclusive about the transitional nature of the Moho.

The near-vertical synthetic seismograms for the different cases is shown in
Figure 9. The single-fold shot gathers are corrected for spherical divergence
and plotted relative true amplitude. The synthetic seismograms for the
isotropic and anisotropic random media and st order Moho show that the
most prominent phase is the PmP reflection (=9.5 s TWTT). As expected, the
anisotropic case predicts a greater degree of sub-horizontal reflectivity. For
the isotropic case, the coda is longer in duration and is seen as the reflectivity
arriving after the PmP reflection (>9.5 s TWTT). Over a wide-range of
incidence angles, isotropic random media will produce both P-to-P and P-10-S
scattering, relative to an incident P-wave. Since the travel time of back-
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Figure 9. Finite element synthetic seismograms for SP28.
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scattered S-waves are longer, the corresponding coda will be longer. This
contrasts with the anisotropic case, which is dominated by P-to-P scattering,
due to the steep incidence angles and sub-horizontal fabric. The coda is
mostly back-scattered P-wave energy with travel times closer to the incident
P-wave and, subsequently, shorter coda durations. Synthetic seismograms for
the transitional Moho models are similar to the previous simulations except of
the lack of a prominent PmP reflection, which is in agreement with the
obscrved data (Fig 3). Based on a qualitative comparisons, the synthetic
scismograms for the anisotropic random media and transitional Moho appear
to best fit the observed near-vertical reflection data (Fig. 3).

9. Discussion and Conclusions

Composition From Seismic Velocity Models—The P-wave crustal
structure derived here provides constraints on the composition and structure
of the upper lithosphere. To place constraints on crustal composition in the
southern Basin and Range, we show plausible rock types, taken from the
laboratory measurements of seismic velocities by Christensen [1979] and
plotted relative to the generalized velocity-depth function (Fig. 10A). The
laboratory determined velocities are corrected for temperature assuming a
regional surficial heat flow of 90 mW m-2 and pressure effects assuming a
mean crustal density of 2.8 g cm-3. The crustal geotherm used to correct the
laboratory velocities is shown in Figure 11B.

The important observation (Fig. 10A) is that no one rock type follows the
interpreted velocity-depth model for more than a few kilometers. We have
chosen only a small number of rock compositions and metamorphic grades
from Christensen [1979], but we feel these reflect a representative sampling
of plausible rock types. We assume that granulite-grade metamorphism is
achieved in the lower crust of the Basin and Range due to the high pressures
(900 GPa) and temperatures (>900°C). Based on these observations, the upper
crust appears to best fit a general suite of granitic-dioritic to quartz-rich
granulitic rocks (5.5 to 6.2 km s-1), while amphibolite to mafic granulites fit
the lower crust, 6.4 to 6.8 km s-1. The correlations imply that the bulk
crustal composition varies with depth, but the correlation of velocity with
composition is non-unique. The primary difficulty arises from the fact that
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the lower crust has a seismic velocity gradient that is difficult to constrain, but
likely ranges from 0.02 to 0.04 s-1, whereas most rock samples exhibit weak
pressure derivatives (0.002 s-1 or less; Christensen, 1979) at pressures
appropriate for the lower crust. Furthermore, the high lower-crustal
temperatures in this region of high heat flow should further decrease the
velocity gradient at depth [Christensen, 1979). A 3% std in velocity for the
lower crust tend to bracket the range of crustal compositions, implying that
the lower crust may consist of a large compositional suite. This observation is
in agreement with laboratory studies of exposed portions of the lower crust
that show large variations in velocity and composition [Fountain, 1976).

Wide-angle Elastic Wave Propagation in Random Media—These
simulations have clearly demonstrated that elastic waves are sensitive to the
type of random media, when viewed over a wide-ranges of incidence angles.
The incidence wave and coda behave differently to differences in the random
media, e. g. isotropic versus anisotropic small-scale heterogeneities. Further
understanding of elastic wave scattering in the crust requires high resolution
recordings of seismic data at near-vertical to wide-angles. Coherency analysis
of both the direct wave (e.g. the PmP phase) and coda, as a function of offset
and frequency, are necessary to constrain possible models of small-scale
velocity heterogeneities. Furthermore, a comprehensive understand of crustal
scale-lengths and attenuation requires a better understanding of the differences
observed in both the back-scattered P- and S-wavefields. Investigations of
crustal scattering have important implications over a broad range of seismic
applications, these include: 1) understanding the generation and propagation of
regional phases used in the location, discrimination, and yield estimation of
nuclear explosions; 2) determining the bulk properties of the crust, based on
composition and velocity relationships; 3) understanding and differentiating
the role of scattering and intrinsic attenuation in the crust, which has
implications concerming the crust's physical state.
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